Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(Benzyliminomethyl)-6-methoxyphenol

Zhong-Fang Li,* Su-Wen Wang, Qian Zhang and Xian-Jin Yu

College of Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China

Correspondence e-mail: zhfli_sdut@yahoo.com.cn

Received 9 August 2007; accepted 28 August 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.058; wR factor = 0.202; data-to-parameter ratio = 17.9.

In the title Schiff base compound, C₁₅H₁₅NO₂, the C=N and C-N bond lengths are 1.277 (4) and 1.453 (5) Å, respectively, while the C-O bond length of the hydroxyl group is 1.334 (3) Å. The molecule exhibits an intramolecular O-H···N hydrogen bond with an O···N distance of 2.548 (3) Å.

Related literature

For related literature, see: Bhadbhade & Srinivas (1993); Bunce et al. (1998); Garnovskii et al. (1993); Huang et al. (2002).

Experimental

Crystal data

C ₁₅ H ₁₅ NO ₂
$M_r = 241.28$
Monoclinic, $P2_1/c$
a = 8.9236 (2) Å
b = 5.7681 (1) Å
c = 23.8006 (2) Å
$\beta = 92.432 \ (2)^{\circ}$

V = 1223.97 (4) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 293 (2) K $0.26 \times 0.24 \times 0.12 \text{ mm}$

Data collection

Bruker APEXII CCD

diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\min} = 0.978, T_{\max} = 0.990$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.058$	165 parameters
$wR(F^2) = 0.202$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$
2958 reflections	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

8962 measured reflections

 $R_{\rm int} = 0.020$

2958 independent reflections

1876 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O2−H2···N1	0.82	1.81	2.548 (3)	150

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

The authors thank Shandong University of Technology for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2232).

References

Bhadbhade, M. M. & Srinivas, D. (1993). Inorg. Chem. 32, 6122-6130.

Bruker (2000). SADABS. Version 2.03. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2001). SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bunce, S., Cross, R. J., Farrugia, L. J., Kunchandy, S., Meason, L. L., Muir, K. W., Donnell, M., Peacock, R. D., Stirling, D. & Teat, S. J. (1998). Polyhedron, 17, 4179-4187.

Garnovskii, A. D., Nivorozkhin, A. L. & Minkin, V. (1993). Coord. Chem. Rev. 126, 1-69.

Huang, D. G., Zhu, H. P., Chen, C. N., Chen, F. & Liu, Q. T. (2002). Chin. J. Struct. Chem. 21, 64-66.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o3930 [doi:10.1107/S1600536807042134]

2-(Benzyliminomethyl)-6-methoxyphenol

Z.-F. Li, S.-W. Wang, Q. Zhang and X.-J. Yu

Comment

Schiff bases have been utilized as ligands for a long time due to their straightforward synthesis and versatility in metal complexes. They therefore play an important role in the development of coordination chemistry as well as inorganic biochemistry, catalysis, optical materials and so on (Garnovskii *et al.*, 1993; Huang *et al.*, 2002). Considerable attention has been focused on the syntheses and structures of copper(II) and nickel(II) complexes. The nickel complexes with multidentate Schiff-base ligands have aroused particular interest because this metal can exhibit several oxidation states and may provide the basis for models of active sites of biological systems. The main attention with optically active Schiff-base complexes is concentrated on their catalytic abilities in stereo-selective synthesis (Bhadbhade & Srinivas, 1993; Bunce *et al.*, 1998). As part of our research aiming to understand the molecular properties of chiral Schiff-base complexes, we describe here the synthesis and crystal structure of the title Schiff-base ligand (Figure 1).

Experimental

A mixture of benzylamine (5.00 mmol) and *o*-vanillin (5.00 mmol) in methanol (40 ml) was refluxed with stirring for one hour to give an orange precipitate which was filtered and washed with methanol to give the title compound in 86% yield. Elemental analysis calculated: C 74.69, H 6.22, N 5.81%; found: C 74.66, H 6.12, N 5.79%.

Refinement

H atoms were positioned geometrically with O—H = 0.82 Å and C—H = 0.93 or 0.96 Å, then constrained to ride on their parent atoms with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl H, and 1.2 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms.

2-(Benzyliminomethyl)-6-methoxyphenol

Crystal data $C_{15}H_{15}NO_2$ $M_r = 241.28$

 $F_{000} = 512$ $D_x = 1.309 \text{ Mg m}^{-3}$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.9236 (2) Å b = 5.7681 (1) Å c = 23.8006 (2) Å $\beta = 92.432$ (2)° V = 1223.97 (4) Å³ Z = 4

Data collection

Mo $K\alpha$ radiation
$\lambda = 0.71073 \text{ Å}$
Cell parameters from 2958 reflections
$\theta = 2.3 - 28.1^{\circ}$
$\mu = 0.09 \text{ mm}^{-1}$
T = 293 (2) K
Block, colourless
$0.26\times0.24\times0.12~mm$

Bruker APEXII CCD diffractometer	2958 independent reflections
Radiation source: fine-focus sealed tube	1876 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.020$
T = 293(2) K	$\theta_{\text{max}} = 28.1^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2000)	$h = -10 \rightarrow 11$
$T_{\min} = 0.978, \ T_{\max} = 0.990$	$k = -7 \rightarrow 7$
8962 measured reflections	$l = -31 \rightarrow 31$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.058$	H-atom parameters constrained
$wR(F^2) = 0.202$	$w = 1/[\sigma^2(F_o^2) + (0.1284P)^2 + 0.1359P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} = 0.003$
2958 reflections	$\Delta \rho_{max} = 0.45 \text{ e} \text{ Å}^{-3}$
165 parameters	$\Delta \rho_{min} = -0.39 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.2240 (3)	0.5473 (5)	-0.01082 (11)	0.0597 (7)
C2	0.2308 (3)	0.3654 (5)	-0.04596 (12)	0.0640 (7)
H11	0.2868	0.2332	-0.0373	0.077*
C3	0.1488 (4)	0.3901 (8)	-0.09541 (16)	0.0889 (11)
H18	0.1501	0.2699	-0.1214	0.107*
C4	0.0667 (4)	0.5786 (8)	-0.10837 (15)	0.0832 (10)
H15	0.0116	0.5850	-0.1424	0.100*
C5	0.0631 (4)	0.7614 (7)	-0.07204 (15)	0.0821 (10)
H17	0.0074	0.8934	-0.0811	0.098*
C6	0.1428 (4)	0.7460 (6)	-0.02230 (13)	0.0705 (8)
H14	0.1425	0.8672	0.0035	0.085*
C7	0.3131 (4)	0.5078 (7)	0.04205 (13)	0.0771 (9)
H12A	0.2776	0.3682	0.0599	0.093*
H12B	0.4172	0.4837	0.0334	0.093*
C8	0.4167 (3)	0.8313 (7)	0.09167 (11)	0.0698 (9)
H7	0.5043	0.8025	0.0730	0.084*
C9	0.4159 (3)	1.0214 (6)	0.13121 (11)	0.0627 (8)
C10	0.2909 (3)	1.0611 (5)	0.16243 (10)	0.0561 (7)
C11	0.2914 (3)	1.2476 (5)	0.20011 (11)	0.0597 (7)
C12	0.1536 (4)	1.4678 (7)	0.26392 (15)	0.0782 (9)
H13A	0.2306	1.4617	0.2933	0.117*
H13B	0.0570	1.4676	0.2802	0.117*
H13C	0.1648	1.6068	0.2423	0.117*
C13	0.4141 (3)	1.3927 (6)	0.20707 (13)	0.0690 (8)
H9	0.4130	1.5144	0.2327	0.083*
C14	0.5364 (3)	1.3557 (7)	0.17609 (15)	0.0773 (9)
H16	0.6190	1.4535	0.1801	0.093*
C15	0.5382 (3)	1.1745 (7)	0.13892 (13)	0.0753 (10)
H8	0.6228	1.1517	0.1181	0.090*
N1	0.3035 (3)	0.7008 (5)	0.08094 (9)	0.0697 (7)
01	0.1661 (2)	1.2709 (4)	0.22824 (9)	0.0730 (7)
O2	0.1710 (2)	0.9237 (4)	0.15680 (8)	0.0670 (6)
H2	0.1852	0.8256	0.1327	0.101*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0579 (15)	0.0649 (17)	0.0569 (14)	0.0073 (12)	0.0109 (11)	0.0053 (12)
C2	0.0709 (17)	0.0586 (16)	0.0630 (15)	0.0114 (13)	0.0089 (13)	-0.0047 (13)
C3	0.088 (2)	0.101 (3)	0.078 (2)	-0.012 (2)	0.0095 (18)	-0.023 (2)
C4	0.067 (2)	0.116 (3)	0.0658 (18)	-0.012 (2)	-0.0051 (14)	0.0036 (19)
C5	0.074 (2)	0.093 (3)	0.078 (2)	0.0119 (17)	-0.0122 (16)	0.0131 (18)
C6	0.0740 (18)	0.0723 (19)	0.0648 (16)	0.0136 (15)	-0.0014 (14)	0.0005 (15)
C7	0.082 (2)	0.088 (2)	0.0613 (17)	0.0314 (18)	0.0042 (14)	0.0068 (16)

supplementary materials

C8	0.0531 (15)	0.106 (2)	0.0503 (13)	0.0250 (16)	0.0068 (11)	0.0195 (15)
C9	0.0455 (13)	0.095 (2)	0.0476 (13)	0.0132 (13)	0.0032 (10)	0.0198 (13)
C10	0.0406 (12)	0.0800 (18)	0.0477 (12)	0.0038 (11)	0.0003 (9)	0.0160 (12)
C11	0.0477 (13)	0.0786 (19)	0.0530 (13)	0.0035 (12)	0.0028 (10)	0.0137 (13)
C12	0.0698 (18)	0.100 (3)	0.0659 (17)	0.0036 (17)	0.0089 (14)	-0.0046 (17)
C13	0.0538 (15)	0.085 (2)	0.0675 (16)	-0.0037 (14)	-0.0020 (12)	0.0145 (15)
C14	0.0515 (15)	0.102 (3)	0.0781 (19)	-0.0111 (16)	0.0025 (13)	0.0179 (19)
C15	0.0411 (13)	0.119 (3)	0.0662 (17)	0.0057 (15)	0.0086 (11)	0.0276 (19)
N1	0.0616 (14)	0.0969 (19)	0.0508 (12)	0.0196 (13)	0.0033 (10)	0.0071 (12)
01	0.0525 (11)	0.0963 (17)	0.0711 (12)	-0.0048 (10)	0.0131 (9)	-0.0105 (11)
O2	0.0489 (10)	0.0910 (16)	0.0617 (11)	-0.0020 (9)	0.0083 (8)	-0.0016 (10)

Geometric parameters (Å, °)

C1—C2	1.345 (4)	С8—Н7	0.930
C1—C6	1.378 (4)	C9—C10	1.386 (4)
C1—C7	1.477 (4)	C9—C15	1.409 (5)
C2—C3	1.367 (5)	C10—O2	1.334 (3)
С2—Н11	0.930	C10—C11	1.401 (4)
C3—C4	1.340 (6)	C11—O1	1.334 (3)
С3—Н18	0.930	C11—C13	1.383 (4)
C4—C5	1.365 (5)	C12—O1	1.425 (4)
C4—H15	0.930	C12—H13A	0.960
С5—С6	1.357 (5)	C12—H13B	0.960
С5—Н17	0.930	C12—H13C	0.960
С6—Н14	0.930	C13—C14	1.360 (4)
C7—N1	1.453 (5)	С13—Н9	0.930
C7—H12A	0.970	C14—C15	1.370 (5)
C7—H12B	0.970	C14—H16	0.930
C8—N1	1.277 (4)	C15—H8	0.930
С8—С9	1.445 (5)	O2—H2	0.820
C2—C1—C6	124.3 (3)	C10—C9—C15	117.6 (3)
C2—C1—C7	111.9 (3)	C10—C9—C8	120.0 (3)
C6—C1—C7	123.8 (3)	C15—C9—C8	122.4 (3)
C1—C2—C3	114.7 (3)	O2—C10—C9	120.6 (3)
C1-C2-H11	122.7	O2-C10-C11	120.1 (2)
С3—С2—Н11	122.7	C9—C10—C11	119.3 (3)
C4—C3—C2	123.4 (3)	O1—C11—C13	123.8 (3)
C4—C3—H18	118.3	O1—C11—C10	114.7 (2)
С2—С3—Н18	118.3	C13—C11—C10	121.5 (2)
C3—C4—C5	120.5 (3)	O1—C12—H13A	109.5
C3—C4—H15	119.7	O1—C12—H13B	109.5
C5—C4—H15	119.7	H13A—C12—H13B	109.5
C6—C5—C4	118.5 (3)	O1—C12—H13C	109.5
С6—С5—Н17	120.8	H13A—C12—H13C	109.5
C4—C5—H17	120.8	H13B—C12—H13C	109.5
C5—C6—C1	118.6 (3)	C14—C13—C11	119.3 (3)
C5-C6-H14	120.7	С14—С13—Н9	120.3
C1-C6-H14	120.7	С11—С13—Н9	120.3

supplementary materials

D—H···A

150

D…*A* 2.548 (3)

N1—C7—C1	112.4 (3)	C13—C14—C15	120.1 (3)
N1—C7—H12A	109.1	C13—C14—H16	120.0
C1—C7—H12A	109.1	C15—C14—H16	120.0
N1—C7—H12B	109.1	C14—C15—C9	122.2 (3)
C1—C7—H12B	109.1	С14—С15—Н8	118.9
H12A—C7—H12B	107.9	С9—С15—Н8	118.9
N1—C8—C9	123.5 (3)	C8—N1—C7	120.8 (3)
N1—C8—H7	118.2	C11—O1—C12	117.9 (2)
С9—С8—Н7	118.2	С10—О2—Н2	109.5
Hydrogen-bond geometry (Å, °)			

1.81

0.82

D—H···A D—H H···A

O2—H2…N1

